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J. Phys. A: Math. Gen. 14 (1981) L477-L484. Printed in Great Britain 

LETTER TO THE EDITOR 

Comparison of classical and quantal spectra for a totally 
bound potential 

R A Pullen and A R Edmonds 
Blackett Laboratory, Imperial College, London SW7 2AZ, England 

Received 8 September 1981 

Abstract. The quantal energy spectrum is compared with the classical motion for the totally 
bound potential +(x2+ y 2 ) + a x 2 y 2 .  The classical phase space is filled with regular tra- 
jectories at lower energies, but as the energy is increased both regular and irregular 
trajectories are observed to coexist. At very high energies the classical phase space is almost 
totally filled with irregular trajectories. The work reported in this Letter is similar to that 
performed by the authors on the HBnon-Heiles potential with the purpose of testing the 
prediction by Percival that there is good agreement between the amount of classical 
irregular motion and the proportion of energy eigenvalues sensitive to small changes in the 
perturbation parameter. However, the potential investigated in this Letter has several 
computational advantages over the HCnon-Heiles potential as well as avoiding compli- 
cations due to quantum mechanical tunnelling. The results show good agreement with 
Percival’s predictions. 

1. Introduction 

Percival (1973) has predicted that, in the semiclassical limit, the quantal energy 
spectrum of a dynamical system consists of a regular and an irregular part. In the 
general case for an inseparable Hamiltonian of N degrees of freedom the regular 
quantal spectrum corresponds, in the limit h + 0, to regular classical motion, where 
trajectories lie on N-dimensional invariant toroids. The irregular quantal spectrum 
corresponds to irregular trajectories which are associated with unstable orbits (Conto- 
poulos 1971) which do not lie on invariant toroids. Energy eigenvalues of the irregular 
spectrum are more sensitive to a slowly changing or fixed perturbation than those of the 
regular spectrum. At low energies the classical phase space is dominated by regular 
trajectories, but as the energy increases a greater volume of phase space is taken up by 
irregular trajectories. 

Pomphrey (1974), Noid et a1 (1980), Weissman and Jortner (1981) and Pullen and 
Edmonds (1981) have made numerical studies of a modified HCnon-Heiles Hamil- 
tonian (HCnon and Heiles 1964) 

H = + ( p : + p : + X 2 + y 2 ) + a ( X 2 y - $ y 3 )  (1.1) 
where p x  = x, p,, = y (m = l ) ,  comparing the quantal spectrum to the classical motion. 
Pomphrey (1974) and Pullen and Edmonds (1981) found that for a = 0.088 there were 
a number of eigenvalues at higher energies which had large second differences, A?, with 
respect to small variations in the perturbation parameter, a. A; is given by 

A:= l[Ej(~y + A a ) - E j ( a ) ] - [ E i ( ( ~ ) - E j ( a  -Aa)]l .  (1.2) 
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These eigenvalues belong to the irregular quantal spectrum and occur above a critical 
energy, E,, which is the energy at which the classical motion begins its transition from 
being dominated by regular motion to being dominated by irregular motion. Pullen and 
Edmonds (1981) showed that these large second differences correspond to avoided 
crossings. Noid eta1 (1980) and Weissman and Jortner (1981) made similar investiga- 
tions with a = 0.11 18 and a = 0.085 respectively. Their results appear to conflict with 
those of Pomphrey (1974) and Pullen and Edmonds (1981). 

In this Letter we have investigated the potential 

U = : (x2+ y 2 )  + a x 2 y 2  (1.3) 
because it has a number of advantages over the Htnon-Heiles potential. Firstly, the 
Htnon-Heiles potential has no strictly bound quantum mechanical states due to 
tunnelling, though for small excitations the error in assuming discrete eigenvalues is 
small. This causes problems when evaluating the eigenvalues by diagonalising the 
truncated matrix fi defined by f i i j  = ($ilfi l$j) ,  where $i and $j are basis functions 
which are linear combinations of the eigenfunctions of the unperturbed harmonic 
oscillator. It is necessary to make the Htnon-Heiles matrix sufficiently large so that the 
computed eigenvalues will converge to the required precision. However, if the matrix is 
made too large, the higher eigenvalues will begin to diverge due to the influence of basis 
functions with a significant proportion of their probability densities outside the 'bound- 
ing triangle' of the Htnon-Heiles potential. This causes accuracy problems and limits 
the range of energy available for investigation. The potential (1.3) has only discrete 
quantum mechanical states, and so increasing the order of the'matrix allows us to obtain 
the required accuracy for all the eigenvalues under investigation. Also there are more 
eigenvalues available for investigation, and the symmetry of the potential allows us to 
split our Hamiltonian matrix into submatrices reducing the computer storage required. 
At  those energies under study h has an effectively smaller value than in previous 
investigations with the HCnon-Heiles potential, and so we might expect a closer 
correspondence between classical and quantal spectra as we are nearer the semiclassical 
limit. 

2. Computation of classical orbits 

The classical equations of motion obtained from the Hamiltonian (1.1) are 

(2.1) 
2 2 x = -x  - 2 a x y  y = - y - 2 f f y x  . 

We used the fifth-order Runge-Kutta-Nystrom method (Henrici 1962, p 173) to 
campute the classical trajectories. Tests were made on the accuracy of the computed 
trajectories by continually checking that the variation in energy was small, and by 
recomputation with a different step length. 

Figure 1 illustrates a contour plot for the potential (1.3) which has the symmetry of 
the C4" point group. 

Surface of section pictures (Poincare 1897) have been produced (figures 2 ( a ) - 2 ( c )  
illustrate a few of these) for a variety of energies, showing the transition from almost 
totally regular motion at low energies to almost totally irregular motion at high 
energies. Conservation of energy restricts any trajectory in four-dimensional phase 
space to a three-dimensional energy shell. At  a particular energy, therefore, the 
restriction x = 0 defines a two-dimensional surface in phase space. Each time a 
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Figure 1. Contour plot for the potential (1.3) with a = 0.05. Both axes range from -10 to 
+lo. 

particular trajectory passes through the surface, i.e. each time it crosses the y axis, a 
point is plotted at the position of intersection ( y , p y ) .  We employ a first-order 
interpolation process to reduce inaccuracies introduced by using a finite step length. 

Regular regions on the surface of section plots are characterised by sets of invariant 
curves, whereas irregular regions are characterised by a random-like distribution of 
intersection points. For our choice of perturbation parameter ( a  = 0.05), the surface of 
section pictures show that the motion is almost wholly regular below E = 15 (see figure 
2 ( a ) ) .  However, as we increase the energy above this value, some of the invariant 
curves begin to break up (see figures 2 ( b )  and 2(c)), and at energies above E = 50 the 
motion appears to be almost wholly irregular. 

We are not concerned in this Letter with the finer details of the surface of section 
pictures, but we are simply using them to illustrate the smooth transition from a phase 
space occupied almost wholly by regular trajectories to one occupied almost wholly by 
irregular trajectories. 

3. Computation of quantal energy spectrum 

We consider the quantum mechanical Hamiltonian in Cartesian coordinates 

A 1 a2 1 a2 
2 ax2 2 ay2 

H +' 2(x2 + y 2 )  + a x 2 y 2  

where h has been put equal to 1. Eigenvalues of this Hamiltonian were calculated by 
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section pictures for the potential 
( a )  E = 10, (6) E = 20, (c) E = 

diagonalising the matrix fi defined by fiii = (t,$lfil$i) where and q?i are basis 
functions which are linear combinations of the eigenfunctions of the unperturbed 
harmonic oscillator with potential 

U = $ ( x 2  + y2). (3.2) 

The normalised eigenfunctions for the potential (3.2) are 

(3.3) 
1 

lCln,ny (x, Y 1 = (7T2nx+nynx!nr!) 1,2H"x(x) exP(-x2/2)Hay(Y) exP(-Y2/2) 

where H,, and HnY are Hermite polynomials. 
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It is important to take account of the full symmetry of the Hamiltonian for two 
reasons. Firstly we can divide the matrix into submatrices and so reduce compu- 
tational time and storage, and secondly we can be sure that large second differences 
calculated by equation (1.2) are due to avoided crossings and not crossings. 

The full symmetry group of the Hamiltonian (3.1) is the C4v point group. There are 
eight elementsof this group: E, Cz, C4, C:, m, wz, U;, crk. E is the unit element, and CZ, 
C4 and C: are rotations by 180", 90" and 270" respectively. cr; and (+; are reflections 
about the x and y axes and w1 and w2 are reflections about these same axes rotated by 
45". Table 1 is the character table for the irreducible representations of C4v. A1, Az,  B1, 
Bz and E label the different irreducible representations. We can see immediately from 
the presence of an irreducible representation of dimension two that the perturbation 
does not completely break the degeneracy of the unperturbed system. We now have 
eigenstates which are non-degenerate and have A1, Az,  B1 or BZ symmetry, or we have 
doubly degenerate states with E symmetry. 

Table 1. Character table of the irreducible representations of the CdV point group. 

E C, 2C4 2u 2u' 

A I  1 1 1 1 1  
A2 1 1 1 -1 -1 
Bi 1 1 -1 1 -1 
B2 1 1 -1 -1 1 
E 2 - 2 0 0 0  

The basis functions we have chosen are linear combinations of the eigenfunctions of 
the unperturbed harmonic oscillator and transform according to the irreducible 
representations of C4v: 

(3.4) N exp[-(xZ + Yz)/21(H',l (x)He,2 ( Y )  +He,, (Y )HE2 ( x ) ) ,  

N exP[-(x2+YZ)/21(H;, (X)HOn2(Y)-HOn1 (Y)H",b)), (3.5) 

N exP[-(x2+Y2)/21(He,, (X)H',,(Y)-He,, (Y)H",(X)), (3.6) 

N exp[-(x2 + Y 2)/21(H0,, (X)HOn2 ( Y )  +HEl (Y )HO,, ( x ) ) ,  (3.7) 

where H', ( x )  and HE (y) are Hermite polynomials with even integer values of n and 
H",x) and H Z ( y )  are Hermite polynomials with odd integer values of a. N is a 
normalisation constant. Basis functions defined by (3.4), ( 3 . 3 ,  (3.6) and (3.7) trans- 
form according to the irreducible representations AI,  Az, BI and BZ respectively. 

We have confined our investigation to non-degenerate eigenvalues as the order of 
the E symmetry submatrix (whose basis functions are made up of combinations of even 
and odd integer Hermite polynomials) requires too much computer storage space for 
accurate evaluation of the higher E symmetry eigenvalues. 

Values of non-zero matrix elements may be calculated using the orthogonality 
relation 
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together with the recursion relation 

qHfl(4) = nHfl-1(d+iHn+1(q) 
to obtain 

(3.9) 

where the positive sign is taken by basis functions of the type (3.4) and (3.7) and the 
negative sign is taken by basis functions of the type (3.5) and (3.6). 

Truncated matrices were diagonalised using Householder reduction to tridiagonal 
form (see Wilkinson and Reinsch 1971, pp 212-6) followed by the method of bisection 
(see Wilkinson and Reinsch 1971, pp 249-56). It was necessary to make the truncated 
matrices sufficiently large so that the computed eigenvalues would converge to the 
required precision (an accuracy of four decimal places was obtained for the higher 
eigenvalues by diagonalising matrices of order 300). We have considered eigenvalues 
computed up to E = 50. 

4. Results and conclusions 

The purpose of this Letter has been to test further the prediction of Percival(l973) that 
in the semiclassical limit irregular classical motion corresponds to an irregular quantal 
spectrum. As discussed in the Introduction, similar investigations to those made in this 
Letter have been made on the HCnon-Heiles potential, but the new potential has the 
advantage that we are dealing with a totally bound system nearer the semiclassical limit. 

We have identified eigenvalues as being irregular if they have large second 
differences corresponding to avoided crossings. Table 2 summarises our results. We 

Table 2. Number of eigenvalues with low, intermediate and high second differences in a 
given energy range. 

Energy Energy 
range Low Intermediate High range Low Intermediate High 

~ ~~ 

11-13 6 5 0 31-33 3 11 9 
13-15 6 5 0 33-35 0 14 10 
15-17 5 8 0 35-37 1 8 16 
17-19 5 10 0 37-39 0 6 21 
19-21 1 11 3 39-41 0 6 19 
21-23 3 9 4 41-43 1 5 22 
23-25 2 9 6 43-45 0 7 24 
25-27 2 17 2 45-47 0 2 26 
27-29 2 8 11 47-49 0 5 28 
29-31 2 11 5 49-51 0 3 30 



L483 Letter to the Editor 

have used equation (1.2) to compute the second differencesfor ha = 0.00125, and have 
sorted the eigenvalues into three categories, low, intermediate and high second 
differences. 

As we have taken symmetry into account we would expect all our large second 
differences to correspond to avoided crossings. This follows from a theorem of von 
Neumann and Wigner (1929), Teller (1937) and Arnol’d (1978) which forbids crossings 
between energy levels of the same symmetry for a one-parameter generic real Hamil- 
tonian system. We have checked this numerically for all large second differences 
obtained and found this to be the case (figure 3 illustrates a sample of avoided 
crossings). 

-& 34 ~ ~ _ _  
0.04875 0.05 0.05125 

Figure 3. Energy versus perturbation parameter plots for eigenvalues of Ai  symmetry. 
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The results of table 2 (which are also illustrated by figure 4) indicate a gradual 
transition from regular quantal behaviour at low energies (E = 20) to irregular quantal 
behaviour at high energies (above E = 50). This corresponds well with the classical 
transition from regularity to irregularity over the same region of energy. 

1001 

Figure 4. Graph illustrating the percentage of non-degenerate eigenvalues with low second 
differences (circles) and high second differences (crosses). Each circle or cross represents 
the percentage calculated over a range of energy AE = 2. Intermediate percentages are not 
plotted. 

Acknowledgment 

One of us (RP) would like to thank the Science Research Council for a postgraduate 
grant. 

References 

Arnol'd V I 1978 Mathematical Methods of Classical Mechanics (New York: Springer) appendix 10 
Contopoulos G 1971 Astron. J. 76 147-56 
HCnon M and Heiles C 1964 Astron. J. 69 73-9 
Henrici P 1962 Discrete Variable Methods in Ordinary Differential Equations (New York: Wiley) 
von Neumann J and Wigner E P 1929 2. Phys. 30 467-70 
Noid D W, Koszykowski M L, Tabor M and Marcus R A 1980 J. Chem. Phys. 72 6169-75 
Percival I C 1973 J. Phys. B: At. Mol. Phys. 6 L229-32 
PoincarC H 1897 New Methods of Celestial Mechanics vol 3, ch 27 (Trans]. NASA Washington DC 1967) 
Pomphrey N 1974 J. Phys. B: At. Mol. Phys. 7 1909-15 
Pullen R A and Edmonds A R 1981 J. Phys. A :  Math. Gen. 14 L319-27 
Teller E 1937 J. Phys. Chem. 41 109-16 
Weissman Y and Jortner J 1981 Chem. Phys. Lett. 78 224-9 
Wilkinson J H and Reinsch C 1971 Handbook for Automatic Computation (Berlin: Springer) 


